

Measurement of the Transverse Single Spin Asymmetry of $p+p^{\uparrow} \rightarrow \eta + X$ at $\sqrt{s} = 200$ GeV

David Kleinjan
University of California, Riverside
For the PHENIX Collaboration

Outline

- Motivation: The $p + p^{\uparrow} \rightarrow h + X$ process and the origin of A_N
- How to Measure A_N
- RHIC and PHENIX
- Current status of η meson A_N measurement
 - Understanding our background
 - Estimated uncertainty on η meson A_N

Motivation

A_N non-zero at various collision energies, various particles

$$x_F = \frac{2p_l}{\sqrt{s}}$$

i.e. fraction of proton energy given to forward momentum of hadron

Collinear pQCD at leading twist interaction has small spin dependence, i.e. no asymmetry

Can initial or final state effects produce a nonzero asymmetry?

Motivation

Collinear pQCD at leading twist interaction has small spin dependence, i.e. no asymmetry

Can initial or final state effects produce a nonzero asymmetry?

What is η meson A_N at $\sqrt{s} = 200$ GeV?

Nucleon-Nucleon collisions: QCD factorization

- - Small spin dependence
- Hard scattering of partons produce Fragments (e.g. hadrons)
 - Different partonic processes responsible for different p_{h T} ranges of measured hadrons

Nucleon-Nucleon collisions: QCD factorization

- Two partons w/ respective momentum fraction interact
- Hard scattering of partons
 - Small spin dependence
- Hard scattering of partons produce Fragments (e.g. hadrons)
 - Different partonic processes responsible for different p_{h,T} ranges of measured hadrons

Origin of A_N from $p + p^{\uparrow} \rightarrow h + X$

Proton Structure $\frac{d^3\sigma(pp\to hX)}{dx_1dx_2dz} \propto q_1(x_1)\cdot q_2(x_2) \times \frac{d^3\hat{\sigma}^{\uparrow}(q_iq_j\to q_kq_i)}{dx_idx_2} \times FF_{q_kq_i}(z,p_{h,T})$ Sversity" quark-distributions $\frac{d^3\sigma(pp\to hX)}{dx_1dx_2} \propto q_1(x_1)\cdot q_2(x_2) \times \frac{d^3\hat{\sigma}^{\uparrow}(q_iq_j\to q_kq_i)}{dx_idx_2} \times FF_{q_kq_i}(z,p_{h,T})$ Sversity" quark-distributions $\frac{d^3\sigma(pp\to hX)}{dx_1dx_2} \propto \frac{d^3\hat{\sigma}^{\uparrow}(q_iq_j\to q_kq_i)}{dx_idx_2} \times FF_{q_kq_i}(z,p_{h,T})$

- "Transversity" quark-distributions and Collins fragmentation
 - Correlation between protonspin and quark-spin and spin dependent fragmentation
- $A_N \propto \delta q(x) \cdot H_1^{\perp}(z, p_{h,T}^2)$

- Sivers quark distribution
 - Correlation between proton spin and transverse quark momentum
- Higher Twist Effects

$$A_N \propto f_{1T}^{\perp q}(x, k_T^2) \cdot D_q^h(z)$$

function

Measuring A_N for $p+p^{\uparrow} \rightarrow h+X$

$$\frac{d\sigma(pp^{\top} \to hX)}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{0} \cdot (1 + P \cdot A_{N}) \text{ Can Determine A}_{N} \text{ if P is known and vice versa}$$

If Polarization Normal to beam momentum:

$$P \cdot A_N \cdot \cos(\phi) = \epsilon(\phi) = \frac{N_1(\phi) - N_2(\phi)}{N_1(\phi) + N_2(\phi)}$$

Polarization Asymmetry

Left-Right Asymmetry

$$\epsilon_{LR}^{\uparrow} = \frac{N_L^{\uparrow}(\phi) - N_R^{\uparrow}(\phi + \pi)}{N_L^{\uparrow}(\phi) + N_R^{\uparrow}(\phi + \pi)}$$
Left Right
$$\frac{\phi}{s}$$

$$\mathbf{IIX} \quad \epsilon_{\mathrm{sqrt}} = \frac{\sqrt{N_L^{\uparrow}(\boldsymbol{\phi})N_R^{\downarrow}(\boldsymbol{\phi}+\boldsymbol{\pi})} - \sqrt{N_L^{\downarrow}(\boldsymbol{\phi})N_R^{\uparrow}(\boldsymbol{\phi}+\boldsymbol{\pi})}}{\sqrt{N_L^{\uparrow}(\boldsymbol{\phi})N_R^{\downarrow}(\boldsymbol{\phi}+\boldsymbol{\pi})} + \sqrt{N_L^{\downarrow}(\boldsymbol{\phi})N_R^{\uparrow}(\boldsymbol{\phi}+\boldsymbol{\pi})}} \quad \mathbf{UCR}$$

RHIC & AGS

- Versatile Polarization: Longitudinal or Transverse (measured w/ CNI polarimeters)
 - Energies probed so far in p + p collisions $\sqrt{s}=62$ GeV, 200GeV, 500GeV

Polarized Beams

PHENIX Interaction Region

- Both beams polarized
- Variation of bunch polarization direction minimizes systematic uncertainties in measurement
- For transversely polarized beams, allows for two independent A_N measurements

MPC detector in PHENIX

- MPC is forward E.M. Calorimeter
 - 2.2x2.2x18 cm³ PbWO₄ crystal towers
 - 220 cm from nominal interaction point
 - $|3.1| < \eta < |3.9|$

MPC detector in PHENIX

- MPC is forward E.M. Calorimeter
 - 2.2x2.2x18 cm³ PbWO₄ crystal towers
 - 220 cm from nominal interaction point
 - $|3.1| < \eta < |3.9|$

MPC detector in PHENIX

- MPC is forward E.M. Calorimeter
 - 2.2x2.2x18 cm³ PbWO₄ crystal towers
 - 220 cm from nominal interaction point
 - $|3.1| < \eta < |3.9|$

• 196(220) crystals in south(north) MPC

Why use PbWO₄?

- Need high density, homogeneous material
 - Short Radiation Length (0.89 cm)
 - Small Moliere Radius (2.0 cm)

Why use PbWO₄?

ZDC North

MuID

- Need high density, homogeneous material
 - Short Radiation Length (0.89 cm)
 - Small Moliere Radius (2.0 cm)

- Capable of reconstructing
 - \blacksquare η mesons (20 70 GeV)
 - Low Energy π^0 (7 17 GeV)
 - High Energy π^0 clusters (>17 GeV)
- SEE TALK BY MICKEY CHIU ON MPC π^0 RESULTS
 - **THURSDAY, SPIN IN HADRONIC REACTIONS 7**

High Energy Cluster Trigger

- Use high energy cuts on clusters, cluster pairs
 - Cluster Energy > 4.0 GeV
 - Pair Energy > 20.0 GeV

- Two Data sets used
 - Minimum Bias Event Trigger
 - High Energy Cluster Trigger
 - Live 4x4 tower energy sum
 - > 20.0 GeV fires the trigger

Extracting the η Meson Counts

- How do we remove the uncorrelated background?
- Take the ratio Real Pair
 Events/Mixed Pair Events, and fit with constant, C
- Scale Mixed Pair Events by this Constant
- Signal = Real Pairs Scaled Mixed Pairs

Mixed Event: Cluster pairing with clusters from two different events

Minimum Bias Event Data

- Clear Signal
- Correlated Background at 0.2-0.4 GeV/c²
 - High energy π^0 Clusters (E > 20 GeV) merge, producing jet correlated background

Minimum Bias Event Data

- Clear Signal
- Correlated Background at 0.2-0.4 GeV/c²
 - High energy π^0 Clusters (E > 20 GeV) merge, producing jet correlated background

(Minimum Bias) Data Compared to simulation

- ~90% of background from pairs where at least one cluster came from a π^0
- Need more detailed studies of simulation

Real Pairs (scaled to simulations) Simulation Pairs At least one cluster parent not from η At least one cluster parent from a π^0 Both cluster parents from a π^0

(Minimum Bias) Data Compared to simulation

- ~90% of background from pairs where at least one cluster came from a π^0
- Need more detailed studies of simulation

Real Pairs (scaled to simulations) Simulation Pairs At least one cluster parent not from η At least one cluster parent from a π^0 Both cluster parents from a π^0

High Energy Cluster Trigger Data

- Clear Signal, improved S/B at high p_T
- Correlated Background
 - Shifts to the right as energy increases
- Will do A_N of background.

$$A_N^{\eta} = r \frac{A_N^{peak} - r A_N^{bg}}{1 - r}$$

Estimation of error on A_N

$$\sigma_{A_N} \sim \frac{1}{pol} \times \frac{1}{\sqrt{N}}$$

- 2008 Run (p+p[†] at $\sqrt{s} = 200 \text{GeV}$) at RHIC
 - 5.2 pb⁻¹ integated luminosity
 - 45% vertical beam polarization
- Estimated Uncertainty
 - Statistical only
 - Does not take into account correlated background subtraction correction.

Summary and Outlook

We see a clear η meson peak in forward (backward) direction for $1.0 < p_T < 4.0$ GeV/c, $0.2 < x_F < 0.7$ in

- = 200 GeV $p+p^{\uparrow}$ collisions
- North and South Arms will provide consistency checks
- Remaining Steps
 - Understand correlated background from Simulations
 - Calculate the foreground, background asymmetry
 - Calculate A_N in x_F , p_T
 - Calculate the cross section
- Expect results soon

